MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS

Wasim Audeh
Department of Basic Sciences
Petra University
Amman, Jordan
e-mail: waudeh@uop.edu.jo

Abstract

We present general singular value inequalities for \(n \)th order Audeh generalized commutator from them recent results for commutators due to Bhatia-Kittaneh, Kittaneh, Hirzallah-Kittaneh, Hirzallah, and Wang-Due are special cases. Several applications are given.

1. Introduction

Let \(B(H) \) denote the space of bounded linear operators on a complex separable Hilbert space \(H \), and let \(K(H) \) denote the two-sided ideal of compact operators in \(B(H) \). An operator of the form \(AX -XA \) is called a commutator, and an operator of the form \(AX -XB \) is called a generalized commutator. Various singular value inequalities for the commutator or the generalized commutator are obtained by different authors. In this paper, the author uses the \(n \)th order Audeh generalized commutator \(A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n \) to generalize the commutator and consider analogous singular value inequalities.
Kittaneh has proved in [7] that if $A, B, X, Y \in B(H)$ such that X, Y are compact, then
\[s_j(AX - YB) \leq 2 \max(\|A\|, \|B\|)s_j(X \oplus Y) \tag{1.1} \]
for $j = 1, 2, \ldots$ Moreover, he generalized results of Bhatia-Kittaneh [2], Kittaneh [6], and Wang-Due [8]. In one of these generalizations he proved that if $A, B, X \in B(H)$ such that A and B are positive, and X is compact, then
\[s_j(AX - XB) \leq \max(\|A\|, \|B\|)s_j(X \oplus X) \tag{1.2} \]
for $j = 1, 2, \ldots$ If, in addition, X is positive, Kittaneh has proved in [5] that
\[s_j(AX - XA) \leq \frac{\|A\|}{2}s_j(X \oplus X) \tag{1.3} \]
for $j = 1, 2, \ldots$.

Hirzallah in [4] has proved a generalization to the inequality (1.1):
Let $A, B, X, Y \in B(H)$ such that X and Y are compact. Then
\[s_j(AX - YB) \leq (\|A\| + \|B\|)s_j(X \oplus Y) \tag{1.4} \]
for $j = 1, 2, \ldots$.

It has been shown by Zhan in [9] that if $A, B \in K(H)$ are positive, then
\[s_j(A - B) \leq s_j(A \oplus B) \tag{1.5} \]
for $j = 1, 2, \ldots$.

Kittaneh in [5] generalized the inequality (1.5) for generalized commutators:
If $A, B, X \in B(H)$ such that A and B are compact and positive, then
\[s_j(AX - XB) \leq \|X\|s_j(A \oplus B) \tag{1.6} \]
for $j = 1, 2, \ldots$.
Hirzallah in [4] generalized the inequality (1.6):

Let A, B, X, Y be n-by-n matrices such that A and B are positive semidefinite. Then

$$s_j(AX - YB) \leq \frac{\|X\| + \|Y\| + \|X - Y\|}{2} s_j(A \oplus B)$$

for $j = 1, 2, \ldots, n$. Moreover, Hirzallah has proved in [4]:

Let A, B, X be n-by-n matrices with polar decompositions $A = U|A|$, $B = V|B|$. Then

$$s_j(AX - XB) \leq \left(\frac{\|U\|_{X} - \|XV\|}{2}\right)s_j(A \oplus B)$$

for $j = 1, 2, \ldots, n$. In particular,

$$s_j(AX -XA) \leq \left(\frac{\|U\|_{X} - \|XU\|}{2}\right)s_j(A \oplus A)$$

for $j = 1, 2, \ldots, n$.

Our aim in this paper is to prove inequalities for singular values of nth-order Audeh generalized commutator, $A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n$ which will generalize the inequalities (1.1) to (1.9).

2. Main Results

We will present the major theorem which is an inequality for singular values of the nth order Audeh generalized commutator $A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n$. To prove this inequality, we need the following lemma, which is an immediate consequence of the min-max principle (see, e.g., [1, p.75] or [4, p.27]).

Lemma 2.1. Let $A, B, X \in B(H)$ such that X is compact. Then

$$s_j(AXB) \leq \|A\| \|B\| s_j(X)$$

for $j = 1, 2, \ldots$.

Our major theorem is a generalization of the inequality (1.4).

Theorem 2.2. Let $A_1, ..., A_m, B_1, ..., B_n, X_1, ..., X_m, Y_1, ..., Y_n \in B(H)$ such that $X_1, ..., X_m, Y_1, ..., Y_n$ are compact. Then

$$s_j (A_1 X_1 + \cdots + A_m X_m - Y_1 B_1 - \cdots - Y_n B_n) \leq (\sqrt{mM} + \sqrt{nN}) s_j (X_1 \oplus \cdots \oplus X_m \oplus Y_1 \oplus \cdots \oplus Y_n)$$

(2.2)

for $j = 1, 2, \ldots$, where

$$M = \sqrt{\|A_1\|^2 + \cdots + \|A_m\|^2} \quad \text{and} \quad N = \sqrt{\|B_1\|^2 + \cdots + \|B_n\|^2}.$$

Proof. Since

$$(A_1 X_1 + \cdots + A_m X_m - Y_1 B_1 - \cdots - Y_n B_n) \oplus 0$$

$$= \begin{bmatrix} A_1 & \cdots & A_m & I & \cdots & I \\ \vdots \\ I \\ B_1 \\ \vdots \\ B_n \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_m \\ -Y_1 \\ \vdots \\ -Y_n \end{bmatrix},$$

(2.3)

then

$$s_j (A_1 X_1 + \cdots + A_m X_m - Y_1 B_1 - \cdots - Y_n B_n)$$
More Commutator Inequalities for Hilbert Space Operators

\[
\begin{bmatrix}
A_1 & \ldots & A_m & I & \ldots & I
\end{bmatrix}
\begin{bmatrix}
X_1 \\
\vdots \\
X_m \\
- Y_1 \\
\vdots \\
- Y_n
\end{bmatrix}
= s_j
\begin{bmatrix}
I \\
\vdots \\
I \\
B_1 \\
\vdots \\
B_n
\end{bmatrix}
\begin{bmatrix}
I \\
\vdots \\
I \\
B_1 \\
\vdots \\
B_n
\end{bmatrix}
\begin{bmatrix}
I \\
\vdots \\
B_1 \\
\vdots \\
B_n
\end{bmatrix}
\]

(2.4)

\[
s_j(X_1 \oplus \cdots \oplus X_m \oplus Y_1 \oplus \cdots \oplus Y_n)
\leq \sqrt{||A_1^*||^2 + \cdots + ||A_m^*||^2 + nI ||B_1||^2 + \cdots + ||B_n||^2 + mI}\\
\leq s_j(X_1 \oplus \cdots \oplus X_m \oplus Y_1 \oplus \cdots \oplus Y_n)
\leq \sqrt{(||A_1||^2 + \cdots + ||A_m||^2 + n)(||B_1||^2 + \cdots + ||B_n||^2 + m)}\\
\leq s_j(X_1 \oplus \cdots \oplus X_m \oplus Y_1 \oplus \cdots \oplus Y_n)
\]

for \(j = 1, 2, \ldots \). In the inequality (2.4) replacing \(A_1, \ldots, A_m, B_1, \ldots, B_n \) by \(tA_1, \ldots, tA_m, tB_1, \ldots, tB_n \), for \(t > 0 \), respectively, we get
\[s_j(A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n) \]
\[\leq \sqrt{\left(t \left\| A_1 \right\|^2 + \cdots + t \left\| A_m \right\|^2 + n \right)(t \left\| B_1 \right\|^2 + \cdots + t \left\| B_n \right\|^2 + m)} \times s_j(X_1 \oplus \cdots \oplus X_m \oplus Y_1 \oplus \cdots \oplus Y_n) \] (2.5)

for \(j = 1, 2, \cdots \) and all \(t > 0 \). Since

\[
\min_{t>0} \sqrt{\left(t \left\| A_1 \right\|^2 + \cdots + t \left\| A_m \right\|^2 + n \right)(t \left\| B_1 \right\|^2 + \cdots + t \left\| B_n \right\|^2 + m)}
\] (2.6)

where \(M = \sqrt{\left\| A_1 \right\|^2 + \cdots + \left\| A_m \right\|^2} \) and \(N = \sqrt{\left\| B_1 \right\|^2 + \cdots + \left\| B_n \right\|^2} \). It follows from the inequalities (2.5), (2.6) that

\[s_j(A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n) \leq (\sqrt{m}M + \sqrt{n}N)s_j(X_1 \oplus \cdots \oplus X_m \oplus Y_1 \oplus \cdots \oplus Y_n) \]
for \(j = 1, 2, \ldots \).

Remark 1. When replacing \(A_2 = \cdots = A_m = B_2 = \cdots = B_n = X_2 = \cdots = X_m = Y_2 = \cdots = Y_n = 0 \) in the inequality (2.2), we get the inequality (1.4).

Let \(A \in K(H) \) and let \(\alpha \) be complex number. The operator \(A - \alpha \) will be compact if \(H \) is \(r \)-dimensional Hilbert space or \(A \) is \(r \)-by-\(r \) matrix. So, our next results will be for \(r \)-by-\(r \) matrices (or operators on \(r \)-dimensional Hilbert space \(H \)).

To prove our next theorem, we need the following two lemmas.

Lemma 2.3. Let \(A \) be \(r \)-by-\(r \) positive semidefinite matrix and let

\[\alpha_j = \frac{s_j(A)}{2} \text{ for } j = 1, 2, \ldots, r. \]
Then

\[s_j(A - \alpha_j) = \alpha_j \] (2.7)

for \(j = 1, 2, \ldots, r. \)
Lemma 2.4. Let $A, B \in K(H)$. Then
\[
s_j(A + B) \leq s_j(A) + \|B\|
\] (2.8)
for $j = 1, 2, \ldots$

As an application of Theorem 2.2, we will present the following theorem which is a generalization of the inequalities (1.5), (1.6), and (1.7).

Theorem 2.5. Let $A_1, \ldots, A_m, B_1, \ldots, B_n, X_1, X_2, \ldots, X_m, Y_1, Y_2, \ldots, Y_n$ be r-by-r matrices such that $A_1, A_2, \ldots, A_m, B_1, \ldots, B_n$ are positive semidefinite, $M = \sqrt{\sum X_m^2 + \cdots + \sum X_m^2}$ and $N = \sqrt{\sum Y_1^2 + \cdots + \sum Y_n^2}$. Then
\[
s_j(A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n) \leq \frac{(\sqrt{mM} + \sqrt{nN}) + \|X_1 + \cdots + X_m - Y_1 - \cdots - Y_n\|}{2}
\times s_j(A_1 \oplus \cdots \oplus A_m \oplus B_1 \oplus \cdots \oplus B_n)
\] (2.9)
for $j = 1, 2, \ldots, r$. In particular,
\[
s_j(A_1X + \cdots + A_mX - XB_1 - \cdots - XB_n) \leq \frac{m + n + |m - n|}{2} \|X\| s_j(A_1 \oplus \cdots \oplus A_m \oplus B_1 \oplus \cdots \oplus B_n)
\] (2.10)
for $j = 1, 2, \ldots, r$.

Proof. It is well known that $s_j(T) = s_j(T^*)$ for $j = 1, 2, \ldots$. This implies that $s_j(A_1X_1 + \cdots + A_mX_m - Y_1B_1 - \cdots - Y_nB_n) = s_j(X_1^*A_1 + \cdots + X_m^*A_m - B_1Y_1^* - \cdots - B_nY_n^*)$ for $j = 1, 2, \ldots, r$.

By direct computations, we see that
\[
X_1^*A_1 + \cdots + X_m^*A_m - B_1Y_1^* - \cdots - B_nY_n^*
\]
\[= X_1^* (A_1 - \gamma) + \cdots + X_m^* (A_m - \gamma) - (B_1 - \gamma) Y_1^* - \cdots - (B_n - \gamma) Y_n^* + \gamma (X_1^* + \cdots + X_m^* - Y_1^* - \cdots - Y_n^*) \]
(2.11)

where \(\gamma \) is a complex number. Now, apply the inequality (2.8) we get

\[
s_j (X_1^* A_1 + \cdots + X_m^* A_m - B_1 Y_1^* - \cdots - B_n Y_n^*)
\]
\[
\leq s_j (X_1^* (A_1 - \gamma) + \cdots + X_m^* (A_m - \gamma) - (B_1 - \gamma) Y_1^* - \cdots - (B_n - \gamma) Y_n^*)
\]
\[
+ \| \gamma (X_1^* + \cdots + X_m^* - Y_1^* - \cdots - Y_n^*) \|
\]
(2.12)

for \(j = 1, 2, \ldots, r \). It follows from Theorem 2.2 that

\[
s_j (X_1^* A_1 + \cdots + X_m^* A_m - B_1 Y_1^* - \cdots - B_n Y_n^*)
\]
\[
\leq (\sqrt{mM} + \sqrt{nN}) s_j ((A_1 - \gamma) \oplus \cdots \oplus (A_m - \gamma) \oplus (B_1 - \gamma) \oplus \cdots \oplus (B_m - \gamma))
\]
\[
+ \| \gamma (X_1^* + \cdots + X_m^* - Y_1^* - \cdots - Y_n^*) \| \text{ for } j = 1, 2, \ldots, r,
\]
(2.13)

where \(M = \sqrt{\|X_1\|^2 + \cdots + \|X_m\|^2} \) and \(N = \sqrt{\|Y_1\|^2 + \cdots + \|Y_n\|^2} \).

Letting \(\gamma = \gamma_j = \frac{s_j (A_1 \oplus \cdots \oplus A_m \oplus B_1 \oplus \cdots \oplus B_n)}{2} \) for \(j = 1, 2, \ldots, r \),
we get

\[
s_j (X_1^* A_1 + \cdots + X_m^* A_m - B_1 Y_1^* - \cdots - B_n Y_n^*)
\]
\[
\leq (\sqrt{mM} + \sqrt{nN}) s_j ((A_1 - \gamma) \oplus \cdots \oplus (A_m - \gamma) \oplus (B_1 - \gamma) \oplus \cdots \oplus (B_m - \gamma))
\]
\[
+ \frac{s_j (A_1 \oplus \cdots \oplus A_m \oplus B_1 \oplus \cdots \oplus B_n)}{2} \| X_1^* + \cdots + X_m^* - Y_1^* - \cdots - Y_n^* \|
\]
(2.14)

Since \(A_1, \ldots, A_m, B_1, \ldots, B_n \) are positive semidefinite, it follows from Lemma 2.3 that
for \(j = 1, 2, \ldots, r \). Now, from the inequalities (2.14) and (2.15) we get

\[
s_j (A_1 X_1 + \cdots + A_m X_m - Y_1 B_1 - \cdots - Y_n B_n)
\leq \frac{\sqrt{mM} + \sqrt{nN}}{2} \| X_1 + \cdots + X_m - Y_1 \cdots - Y_n \|
\times s_j (A_1 \oplus \cdots \oplus A_m \oplus B_1 \oplus \cdots \oplus B_m)
\]

for \(j = 1, 2, \ldots, r \). Note that the inequality (2.9) is a generalization of the inequality (1.7). To see this, replace \(A_2 \cdots = A_m = B_2 = \cdots = B_n = X_2 = \cdots = X_m = Y_2 = \cdots = Y_n = 0 \), we get \(s_j (AX - YB) \leq \frac{\| X \| + \| Y \| + \| X - Y \|}{2} \times s_j (A \oplus B) \) for \(j = 1, 2, \ldots, r \).

As an application of Theorem 2.2, we will present the following theorem which is a generalization of the inequality (1.8).

Theorem 2.6. Let \(A_1, A_2, \ldots, A_n, X \) be \(r \times r \) matrices with polar decompositions \(A_1 = U_1 | A_1 |, A_2 = U_2 | A_2 |, \ldots, A_n = U_n | A_n | \). Then

\[
s_j (A_1 X - X A_2 - \cdots - X A_n)
\leq \frac{n \| X \| + \| U_1 X - X U_2 - \cdots - X U_n \|}{2}
\times s_j (A_1 \oplus A_2 \oplus \cdots \oplus A_n)
\]

for \(j = 1, 2, \ldots, r \).

Proof. As special case from Theorem 2.2, assume \(A_2 = \cdots = A_m = X_2 = \cdots = X_m = B_1 = Y_1 = 0, Y_i = X_i \) and \(B_i = A_i \) for \(i = 2, \ldots, n \), we get
\[s_j(A_1 X_1 - X_2 A_2 - \cdots - X_n A_n) \]

\[\leq (\| A_1 \| + \sqrt{n-1}L)s_j(X_1 \oplus X_2 \oplus \cdots \oplus X_n), \quad (2.17) \]

where

\[L = \sqrt{\| A_2 \|^2 + \cdots + \| A_n \|^2}, \]

for \(j = 1, 2, \ldots \). Using the polar decomposition of \(A_1, A_2, \ldots, A_n \), and applying Theorem 2.5, we get

\[s_j(A_1 X - X A_2 - \cdots - X A_n) \]

\[= s_j(U_1 | A_1 | X - X U_2 | A_2 | - \cdots - X U_n | A_n |) \]

\[= s_j(| A_1 | X - U_1^* X U_2 | A_2 | - \cdots - U_1^* X U_n | A_n |) \]

\[\leq \left(\| X \| + \sqrt{(n-1)\| U_1^* X U_2 \|^2 + \cdots + \| U_1^* X U_n \|^2} \right) \]

\[\times s_j(A_1 \oplus A_2 \oplus \cdots \oplus A_n) \]

\[\leq \| X \| + \sqrt{(n-1)(n-1)\| X \|^2 \| U_1 X - X U_2 - \cdots - X U_n \|^2} \]

\[\times s_j(A_1 \oplus A_2 \oplus \cdots \oplus A_n) \]

\[\leq n\| X \| + \frac{\| U_1 X - X U_2 - \cdots - X U_n \|^2}{2} \]

\[\times s_j(A_1 \oplus A_2 \oplus \cdots \oplus A_n) \quad (2.18) \]

for \(j = 1, 2, \ldots, r \).
References

<table>
<thead>
<tr>
<th>Paper # PPH-1403033-FA</th>
<th>Proof read by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindly return the proof after correction to:</td>
<td>Copyright transferred to the Pushpa Publishing House</td>
</tr>
<tr>
<td>The Publication Manager Pushpa Publishing House Vijaya Niwas 198, Mumfordganj Allahabad-211002 (India)</td>
<td>Signature: ...</td>
</tr>
<tr>
<td>along with the print charges* by the fastest mail</td>
<td>Date: ...</td>
</tr>
<tr>
<td>*Invoice attached</td>
<td>Tel: ..</td>
</tr>
<tr>
<td></td>
<td>Fax: ..</td>
</tr>
<tr>
<td></td>
<td>e-mail: ..</td>
</tr>
<tr>
<td></td>
<td>Number of additional reprints required</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>Cost of a set of 25 copies of additional reprints @ Euro 12.00 per page.</td>
</tr>
<tr>
<td></td>
<td>(25 copies of reprints are provided to the corresponding author ex-gratis)</td>
</tr>
</tbody>
</table>