Singular Value Inequalities for Compact Normal Operators

Wasim Audeh
Department of Basic Sciences, Petra University, Amman, Jordan
Email: waudeh@uop.edu.jo
Received September 25, 2013; revised October 28, 2013; accepted November 7, 2013

ABSTRACT

We give singular value inequality to compact normal operators, which states that if \(A \) is compact normal operator on a complex separable Hilbert space, where \(A = A_1 + iA_2 \) is the cartesian decomposition of \(A \), then

\[
\frac{1}{\sqrt{2}} s_j (A_1 + A_2) \leq s_j (A) \leq \frac{1}{\sqrt{2}} [s_j (|A_1|) + s_j (|A_2|)] \quad \text{for } j = 1, 2, \cdots
\]

Moreover, we give inequality which asserts that if \(A \) is compact normal operator, then

\[
\sqrt{2}s_j (A_1 + A_2) \leq s_j (A + iA') \leq 2s_j (A_1 + A_2) \quad \text{for } j = 1, 2, \cdots
\]

Several inequalities will be proved.

Keywords: Compact Operator; Inequality; Normal Operator; Self-Adjoint Operator; Singular Value

1. Introduction

Let \(B(H) \) denote the space of all bounded linear operators on a complex separable Hilbert space \(H \), and let \(K(H) \) denote the two-sided ideal of compact operators in \(B(H) \). For \(T \in K(H) \), the singular values of \(T \), denoted by \(s_1(T), s_2(T), \cdots \) are the eigenvalues of the positive operator \(|T| = (T^*T)^{1/2} \) as \(s_1(T) \geq s_2(T) \geq \cdots \) and repeated according to multiplicity. Note that \(s_j(T) = s_j(T^*) = s_j(T^2) = s_j(T^4) = \cdots \) for \(j = 1, 2, \cdots \). It follows Weyl’s monotonicity principle (see, e.g., [1, p. 63] or [2, p. 26]) that if \(S, T \in K(H) \) are positive and \(S \leq T \), then

\[
s_j (S) \leq s_j (T) \quad \text{for } j = 1, 2, \cdots
\]

The singular values of \(S \oplus T \) and \[
\begin{bmatrix} S & 0 \\ 0 & T \end{bmatrix}
\]

are the same, and they consist of those of \(S \) together with those of \(T \). Here, we use the direct sum notation \(S \oplus T \) for the blockdiagonal operator \[
\begin{bmatrix} S & 0 \\ 0 & T \end{bmatrix}
\]
defined on \(H \oplus H \).

The Jordan decomposition for self-adjoint operators asserts that every self-adjoint operator can be expressed as the difference of two positive operators. In fact, if \(A \in B(H) \) is self-adjoint, then \(A = A^* - A' \), where \(A^+ \) and \(A^- \) are the positive operators given by

\[
A^+ = \frac{A + A^*}{2} \quad \text{and} \quad A^- = \frac{A - A^*}{2}
\]

Let \(A \) be any operator, we can write \(A \) in the form

\[
A = A_1 + iA_2, \quad \text{where} \quad A_1 = \frac{A + A^*}{2} \quad \text{and} \quad A_2 = \frac{A - A^*}{2i}
\]

are self-adjoint operators, this is called the Cartesian decomposition of the operator \(A \). If \(A \) is normal, then \(A_1A_2 = A_2A_1 \).

Audeh and Kittaneh have proved in [3] that if \(A, B, C \in K(H) \) such that

\[
\begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \geq 0,
\]

then

\[
s_j (B) \leq s_j (A \oplus C) \quad (1.1)
\]

for \(j = 1, 2, \cdots \).

Also, Audeh and Kittaneh have proved in [3] that if

\[
A, B \in K(H) \quad \text{such that} \quad A \quad \text{is self-adjoint}, \quad B \geq 0, \quad \text{and} \quad \pm A \leq B,
\]

then

\[
2s_j (A) \leq s_j \left((B + A) \oplus (B - A) \right) \quad (1.2)
\]

for \(j = 1, 2, \cdots \).

In addition to this, Audeh and Kittaneh have proved in [3] that if \(A, B \in K(H) \) be self-adjoint operators, then

\[
s_j (A + B) \leq s_j \left((A^* + B^*) \oplus (A^* + B^*) \right) \quad (1.3)
\]

for \(j = 1, 2, \cdots \).

Zhan has proved in [4] that if \(A, B \in K(H) \) are posi-
tive, then
\[s_j(A - B) \leq s_j(A \oplus B) \] (1.4)
for \(j = 1, 2, \ldots \). Moreover, it has proved in [3] that (1.3) is a generalization of (1.4).

Hirzallah and Kittaneh have proved in [5] that if \(A, B \in K(H) \), then
\[s_j(A + B) \leq 2s_j(A \oplus B) \] (1.5)

In this paper, we will give singular value inequalities for normal operators:

Let \(A \) be normal operator in \(K(H) \). Then
\[\frac{1}{\sqrt{2}} s_j(A_1 + A_2) \leq s_j(A) \leq s_j(\|A_1\| + |A_2|) \] (1.6)
for \(j = 1, 2, \ldots \).

We will give singular value inequality to the normal operator \(\star A \), where \(A \) is normal:

Let \(A \) be normal operator in \(K(H) \). Then
\[\frac{1}{\sqrt{2}} |a + b| = \frac{1}{\sqrt{2}} \sqrt{(a + b)^2} = \frac{1}{\sqrt{2}} \sqrt{a^2 + 2ab + b^2} \leq \frac{1}{\sqrt{2}} \sqrt{a^2 + a^2 + b^2 + b^2} = \frac{1}{\sqrt{2}} \sqrt{2a^2 + 2b^2} = \sqrt{a^2 + b^2} = |x| \]

Moreover, \(\frac{1}{\sqrt{2}} |a - b| = \frac{1}{\sqrt{2}} \sqrt{(a - b)^2} = \frac{1}{\sqrt{2}} \sqrt{a^2 - 2ab + b^2} \leq \sqrt{a^2 + b^2} = |x| \).

Now, we will present operator version of Theorem 2.1, inequality (2.1).

Theorem 2.2. Let \(A \) be normal operator in \(K(H) \), where \(A = A_1 + iA_2 \) be the Cartesian decomposition of \(A \). Then
\[\frac{1}{\sqrt{2}} s_j(A_1 + A_2) \leq s_j(A) \leq s_j(\|A_1\| + |A_2|) \]
for \(j = 1, 2, \ldots \).

Proof. Let \(A = A_1 + iA_2 \) be the Cartesian decomposition of the normal operator \(A \), which implies that \(A_1A_2 = A_2A_1 \). Now, \(A^*A = A_1^2 + A_2^2 \), it follows that
\[|A| = \sqrt{A^*A} = \sqrt{A_1^2 + A_2^2}. \]
In fact, \(s_j(A) = s_j(|A|) \) for \(j = 1, 2, \ldots \). By using Weyl’s monotonicity principle [1] and the inequality \(\sqrt{A_1^2 + A_2^2} \leq |A_1| + |A_2| \), we get the right hand side of the theorem. To prove the left hand side of the inequality, we will use the inequality which is well known for commuting self-adjoint operators and it asserts that
\[0 \leq (A_1 + A_2)^2 \leq 2(A_1^2 + A_2^2) \] (2.3)
This implies that \(|A_1 + A_2| \leq \sqrt{2(A_1^2 + A_2^2)} \) (2.4)

But it is known that \(s_j(A_1 + A_2) = s_j(|A_1 + A_2|) \), it follows Weyl’s monotonicity principle [1] and the inequality (2.4) that
\[s_j(A_1 + A_2) \leq \sqrt{2}s_j(A) \] (2.5)
for \(j = 1, 2, \ldots \).

Inequality (2.5) is equivalent to saying that
\[\frac{1}{\sqrt{2}} s_j(A_1 + A_2) \leq s_j(A) \]
for \(j = 1, 2, \ldots \).

Remark 1. (i) Equality holds in the right hand side of Theorem 2.2 if either \(A_1 = 0 \) or \(A_2 = 0 \).
(ii) Equality holds in the left hand side of theorem 2.2 if \(A_1 = A_2 \).

We will present operator version of Theorem 2.1, inequality (2.2).

Remark 2. Let \(X \) be normal operator with \(X = X_1 + iX_2 \) is the Cartesian decomposition of \(X \).
Now, by direct calculations and applying Theorem 2.2 we get
\[
\frac{1}{\sqrt{2}} s_j (A_i - A_2) \leq s_j (A) \leq \sqrt{2} s_j \left(|A_i| + |A_2| \right) \quad (2.6)
\]
for \(j = 1, 2, \ldots \)

Remark 3. We note that the right hand side of the inequality (2.6) is the same as the inequality (1.6), but the left hand side of the inequalities (1.6) and (2.6) says that the singular value of the addition or subtraction of the Cartesian decomposition for the normal operator \(A \) divided by \(\sqrt{2} \) is less than or equal to the singular value of the normal operator itself.

As an application of the Theorem 2.2, we will determine upper and lower bounds for singular values of the normal operator \(A + iA' \), where \(A \) is normal.

Theorem 2.3. Let \(A \in K(H) \) be normal operator, where \(A = A_i + iA_2 \) is the Cartesian decomposition of
\[
|X_j| = \begin{bmatrix}
\frac{A - A'}{2} & 0 \\
0 & \frac{A - A'}{2}
\end{bmatrix}, \quad \text{and} \quad |X_j| = \begin{bmatrix}
\frac{A + A'}{2} & 0 \\
0 & \frac{A + A'}{2}
\end{bmatrix}.
\]

It follows that \(|X_j| = \begin{bmatrix}
\frac{A - A}{2} & 0 \\
0 & \frac{A - A}{2}
\end{bmatrix}, \quad \text{and} \quad |X_j| = \begin{bmatrix}
\frac{A + A}{2} & 0 \\
0 & \frac{A + A}{2}
\end{bmatrix}.\)

Now, by direct calculations and applying Theorem 2.2 we get
\[
\frac{1}{\sqrt{2}} s_j (A_i - A_2) \leq s_j (A) \leq \frac{1}{\sqrt{2}} s_j \left(|A_i| + |A_2| \right) \quad (2.7)
\]
for \(j = 1, 2, \ldots \)

This is equivalent to saying that
\[
\sqrt{2} s_j (A_i + A_2) \leq s_j \left(A + iA' \right) \leq \sqrt{2} s_j (A_i + A_2) \quad (1.2)
\]

Theorem 2.4. Let \(A, B \in K(H) \) such that \(A \) is self-adjoint, \(B \geq 0 \), and \(\pm A \leq B \), then
\[
2 s_j (A) \leq s_j \left((B + A) \oplus (B - A) \right)
\]
for \(j = 1, 2, \ldots \)

Proof. Since \(A \) is self-adjoint operator, we can write \(A \) in the form \(A = \frac{(B + A) - (B - A)}{2} \), apply the inequality (1.4) we get
\[
s_j (A) = \frac{1}{2} s_j \left((B + A) - (B - A) \right) \leq \frac{1}{2} s_j \left((B + A) \oplus (B - A) \right)
\]
which is equivalent to saying that
\[
2 s_j (A) \leq s_j \left((B + A) \oplus (B - A) \right)
\]
for \(j = 1, 2, \ldots \)

Audeh and Kittaneh separates Jordan of self-adjoint operator in the inequality (1.3). Here we will give a shorter proof.

Theorem 2.5. Let \(A, B \in K(H) \) be self-adjoint operators. Then

\[
s_j(A + B) \leq s_j\left((A^* + B^*) \oplus (A^* + B^*)\right)
\]

for \(j = 1, 2, \ldots \)

Proof. Since \(A \) and \(B \) are self-adjoint operators, we can write \(A \) in the form \(A = A^* - A^* \), and similarly we will write \(B \) in the form \(B = B^* - B^* \). Apply the inequality (1.4) we get

\[
s_j(A + B) = s_j\left((A^* - A^* + B^* - B^*)\right)
\]

\[
s_j(A + B) = s_j\left((A + B^*) - (A^* + B^*)\right)
\]

\[
\leq s_j\left((A + B^*) \oplus (A^* + B^*)\right)
\]

for \(j = 1, 2, \ldots \)

We will present the following two theorems as an application to the inequality (1.5).

Theorem 2.6. Let \(A \in K(H) \) be self-adjoint operator. Then

\[
s_j(A) \leq 2s_j\left(2A^* + 2A^*\right) \oplus \left(A^* + A^*\right)
\]

for \(j = 1, 2, \ldots \)

Proof. It was proved in Theorem 2.2 that if \(A \) is normal operator with Cartesian decomposition \(A = A^* + A^* \), then

\[
s_j(A) \leq s_j\left(|A| + |A|\right)
\]

from this, it follows that

\[
s_j(A) \leq s_j\left(|A| - A + |A| - A + A + A\right)
\]

\[
\leq 2s_j\left(2A^* + 2A^*\right) \oplus \left(A^* + A^*\right)
\]

for \(j = 1, 2, \ldots \)

The following theorem is the second application of the inequality (1.5).

Theorem 2.7. Let \(A \in K(H) \) be self-adjoint operator. Then

\[
s_j(A^*) \leq s_j\left(A \oplus |A|\right)
\]

for \(j = 1, 2, \ldots \)

Proof. It is well known that \(A^* = \frac{|A| + A}{2} \), so using the inequality (1.5) we get

\[
s_j(A^*) = s_j\left(\frac{|A| + A}{2}\right) \leq 2s_j\left(\frac{|A|}{2} \oplus \frac{A}{2}\right) = s_j\left(A \oplus |A|\right)
\]

for \(j = 1, 2, \ldots \)

Similarly, \(A^* = \frac{|A| - A}{2} \), so using the inequality (1.5) we get

\[
s_j(A^*) = s_j\left(\frac{|A| - A}{2}\right) \leq 2s_j\left(\frac{|A|}{2} \oplus \frac{-A}{2}\right) = s_j\left(A \oplus |A|\right)
\]

for \(j = 1, 2, \ldots \)

Bhatia and Kittaneh have proved in [6] that if \(A, B \in K(H) \), then

\[
s_j\left(A^* + B^*\right) \leq s_j\left((A^* + B^*) \oplus (A^* + B^*)\right)
\]

for \(j = 1, 2, \ldots \). For related Cauchy-Schwarz type inequalities, we refer to [2] and references therein. Here, we will present similar new inequality.

Theorem 2.8. Let \(A, B \in K(H) \) be operators. Then

\[
s_j\left(A^* + B^*\right) \leq s_j\left((A^* + B^*) \oplus (A^* + B^*)\right)
\]

for \(j = 1, 2, \ldots \)

Proof. Suppose \(X = \begin{bmatrix} A & 0 \\ B & 0 \end{bmatrix} \) and \(Y = \begin{bmatrix} B & 0 \\ B^* & 0 \end{bmatrix} \).

This implies that

\[
XX^* = \begin{bmatrix} AA^* & AB \\ B^* & B^* \end{bmatrix}, \quad X^*X = \begin{bmatrix} A^* + B^* & 0 \\ 0 & 0 \end{bmatrix}
\]

On the other hand, we have

\[
YY^* = \begin{bmatrix} BB^* & BA \\ B^* & B^* \end{bmatrix}, \quad Y^*Y = \begin{bmatrix} B^*B + AA^* & 0 \\ 0 & 0 \end{bmatrix}
\]

Since \(XX^* \) and \(YY^* \) are positive operators, then

\[
XX^* + YY^* = \begin{bmatrix} AA^* + BB^* & AB + BA \\ B^*A^* + A^*B^* & B^* \end{bmatrix}
\]

is positive operator. Now by applying the inequality (1.1), we get

\[
s_j\left(A^* + B^*\right) \leq s_j\left((A^* + B^*) \oplus (A^* + B^*)\right)
\]

for \(j = 1, 2, \ldots \)

REFERENCES

http://dx.doi.org/10.1007/978-1-4612-0653-8

http://dx.doi.org/10.1016/j.laa.2012.06.032

http://dx.doi.org/10.1137/S0895479800369840

Open Access
http://dx.doi.org/10.1016/j.laa.2006.03.036

http://dx.doi.org/10.1016/j.laa.2007.11.030