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Abstract 

Background: Cigarette smoking is the leading preventable cause of death worldwide, and it is the most common 
cause of oral cancers. This study aims to provide a deeper understanding of the molecular pathways in the oral cavity 
that are altered by exposure to cigarette smoke.

Methods: The gene expression dataset (accession number GSE8987, GPL96) of buccal mucosa samples from smok‑
ers (n = 5) and never smokers (n = 5) was downloaded from The National Center for Biotechnology Information’s 
(NCBI) Gene Expression Omnibus (GEO) repository. Differential expression was ascertained via NCBI’s GEO2R software, 
and Ingenuity Pathway Analysis (IPA) software was used to perform a pathway analysis.

Results: A total of 459 genes were found to be significantly differentially expressed in smoker buccal mucosa 
(p  < 0.05). A total of 261 genes were over‑expressed while 198 genes were under‑expressed. The top canonical path‑
ways predicted by IPA were nitric oxide and reactive oxygen production at macrophages, macrophages/fibroblasts 
and endothelial cells in rheumatoid arthritis, and thyroid cancer pathways. The IPA upstream analysis predicted that 
the TP53, APP, SMAD3, and TNF proteins as well as dexamethasone drug would be top transcriptional regulators.

Conclusions: IPA highlighted critical pathways of carcinogenesis, mainly nitric oxide and reactive oxygen production 
at macrophages, and confirmed widespread injury in the buccal mucosa due to exposure to cigarette smoke. Our 
findings suggest that cigarette smoking significantly impacts gene pathways in the buccal mucosa and may highlight 
potential targets for treating the effects of cigarette smoking.

Keyword: Gene expression, Cigarette smoking, Ingenuity Pathway Analysis, Buccal mucosa

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Background
Tobacco smoking is responsible for one in six of all 
deaths from non-communicable diseases, leading experts 
to identify tobacco control as the highest priority public 
health intervention [1, 2]. The prevalence of smoking has 
fallen around the world over the past three decades, but 
the absolute number of people who smoke has increased 
[3]. Despite a coordinated worldwide effort against smok-
ing, there are around 1.1 billion current smokers, and it 
is expected that this number would reach 1.9 billion by 
2025 if current smoking patterns are maintained [4].

Cigarette smoke contains over 5000 chemicals, of 
which 98 have been identified as carcinogenic or prob-
ably carcinogenic to humans [5]. The plethora of car-
cinogens in cigarette smoke perturbs biological pathways 
related to cellular proliferation, inflammation, and tissue 
injury, with strong links to various types of cancer [6, 7]. 
In cancer patients, cigarette smoking has been associated 
with an increased symptom burden as well as a reduced 
efficacy of chemotherapy [6, 8].

Smoking-induced differential gene expression has been 
well-documented in previous studies. In fact, smoking 
has a characteristic impact on the transcriptome, as it 
activates inflammatory and oxidative responses, changes 
airway structures, and alters gene expression across tis-
sue types [9]. Previous studies have shown that cigarette 
smoking significantly alters the gene expression profiles 
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of adipose tissue, buccal cells, nasal epithelial cells, lung 
tissue, and whole blood [10–14].

The aim of the current study is to broaden the under-
standing of the molecular pathways that are altered in 
buccal mucosa after exposure to cigarette smoke. Gene 
expression data from smokers and never smokers were 
analyzed via Ingenuity Pathway Analysis (IPA), which is 
a web-based software application that identifies new tar-
gets within the context of biological systems.

Methods
Data acquisition
The microarray dataset investigated in the present study 
was obtained from The National Center for Biotechnol-
ogy Information’s (NCBI) Gene Expression Omnibus 
(GEO) repository (accession number GSE8987). This 
dataset included gene expression data of buccal mucosa 
samples from smokers (n = 5) and never smokers (n = 5) 
[15]. Smokers were classified as those who had smoked 
at least 10 cigarettes per day and who had a cumulative 
smoking history of at least 10 pack years [15]. Table  1 
shows the gene expression data samples included in the 
current study.

As per the original study by Sridhar et  al., buccal 
mucosa samples were collected from the study partici-
pants by scraping the inside of their mouths with a con-
cave plastic tool with serrated edges. Total RNA was 
extracted from buccal mucosa samples using TRIzol rea-
gent (Invitrogen, Carlsbad, CA), and RNA integrity was 
assessed using a denaturing agarose gel. The Affymetrix 
Human Genome U133A (HG-U133A) Array (Affym-
etrix, Santa Clara, CA) was then used to profile the gene 
expression of the extracted total RNA samples [15].

The demographics of the 10 subjects varied with 
regard to sex, age, and race. Among the 5 smokers, the 
mean age was 36 years old (± 8 years), with 1 male and 4 
females. Similarly, the mean age of the 5 never smokers 

was 31 years old (± 9 years), with 2 males and 3 females. 
In terms of race, the smoker group comprised 3 Cauca-
sians and 2 African Americans, while the never-smoker 
group consisted of 2 Caucasians and 3 African Ameri-
cans. Demographic data for individual subjects were not 
provided in the dataset, but statistical comparisons of 
the smoker and never-smoker groups revealed not sig-
nificant p values for sex (p = 0.42), age (p = 0.36), and race 
(p = 0.40) [15].

Identification of differentially expressed (DE) genes
The GEO2R software, which is available on the NCBI 
website, was used to create a list of 15,000 differentially 
expressed genes between smoker and never-smoker buc-
cal samples.

The 15,000 genes were inputted into a Microsoft Excel 
spreadsheet and sorted by significance (Additional file 1: 
Table  S1). After applying strict cut-off criteria (p < 0.05 
and absolute fold change between − 0.5 and 1.5), the list 
of DE genes was narrowed down to 459 genes.

The Bioconductor package Enhanced Volcano was used 
to visualize the 459 DE genes in the form of a labelled 
volcano plot [16].

Ingenuity pathway analysis (IPA)
The list of DE genes was inputted into IPA software 
(QIAGEN, Hilden, Germany), where the ‘core analysis’ 
function of the software was used to interpret the data in 
terms of canonical pathways and upstream regulators.

Pathway and functional enrichment analysis
The Bioconductor package clusterProfiler was used to 
carry out an over-representation analysis of the DE genes 
[17, 18]. Similarly, the SIGnaling Network Open Resource 
2.0 (SIGNOR 2.0) was used to explore the signaling net-
works that exist between the DE genes [19].

Results
Differentially expressed (DE) genes
Figure  1 displays a volcano plot of the full list of DE 
genes. However, only 459 genes exhibited significant dif-
ferential expression, with 261 genes found to be over-
expressed and 198 found to be under-expressed.

Figure 2 illustrates the chromosomal location, molecu-
lar class, and cellular location of the 459 DE genes. Chro-
mosome 1 had the highest number of significantly DE 
genes (n = 63), followed by chromosome 6 (n = 30), chro-
mosome 2 (n = 29), and chromosome 19 (n = 27). Simi-
larly, the most represented molecular classes among the 
significantly DE genes were enzymes (19.6%) and tran-
scription regulators (12%). Lastly, the majority of the sig-
nificantly DE genes were located either in the cytoplasm 
(40.5%) or the nucleus (25.7%).

Table 1 Gene expression data samples included in the current 
analysis

Sample nos. Subject Type of sample Source of sample

GSM227858 Never smoker RNA Buccal mucosa

GSM227859 Never smoker RNA Buccal mucosa

GSM227860 Never smoker RNA Buccal mucosa

GSM227861 Smoker RNA Buccal mucosa

GSM227862 Smoker RNA Buccal mucosa

GSM227863 Smoker RNA Buccal mucosa

GSM227864 Smoker RNA Buccal mucosa

GSM227865 Smoker RNA Buccal mucosa

GSM227866 Never smoker RNA Buccal mucosa

GSM227867 Never smoker RNA Buccal mucosa
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Fig. 1 Volcano plot of the most significantly differentially expressed genes in smoker buccal mucosa. Gray points are non‑significant, green points 
have a significant log2FC, blue points have a significant p value, and red points have both a significant log2FC and p value
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Table  2 lists the most significantly DE genes between 
smoker and never smoker buccal mucosa samples, show-
ing that protein-coding genes occupy the top ranks in 
terms of significance.

Interaction network of differentially expressed (DE) genes
Figure  3A demonstrates the interplay between the DE 
oncological pathways, cytokines, and genes in smoker 
buccal mucosa, namely the IL2, EGFR, and ESR2 genes. 
Other than TIMP3, all the proteins in the pathway were 
predicted to be inhibited in smoker buccal mucosa.

Figure  3B illustrates the results of an interaction 
network analysis of the DE genes in smoker buc-
cal mucosa. Interestingly, the RPA1 gene was shown 
to have the highest number of interactions with the 
other DE genes in smoker buccal mucosa, but it did 
not have a significant level of differential expression 
(p > 0.05).

Upstream regulators
The top 20 regulators predicted by IPA included 
the TP53, APP, SMAD3, and TNF proteins as well 

Table 2 Significantly differentially expressed genes in smokers as revealed by IPA and as sorted by p value

Chr, chromosome;  log2 ratio,  log2 fold change ratio of the gene expression between 2 groups

NCBI ID Gene symbol Gene name Chr Molecule type Expression Log2 ratio p value

Top differentially expressed protein-coding genes

26038 CHD5 Chromodomain helicase DNA binding protein 
5

1 Enzyme Up 2.335 1.28 ×  10–04

27344 PCSK1N Proprotein convertase subtilisin/kexin type 1 
inhibitor

X Other Up 2.45 2.72 ×  10–04

9444 QKI QKI, KH domain containing RNA binding 6 Other Down − 2.484 2.97 ×  10–04

55509 BATF3 Basic leucine zipper ATF‑like transcription factor 
3

1 Transcription regulator Up 2.379 3.54 ×  10–04

3570 IL6R Interleukin 6 receptor 1 Transmembrane receptor Down − 2.444 3.80 ×  10–04

51302 CYP39A1 Cytochrome P450 family 39 subfamily A 
member 1

6 Enzyme Down − 2.371 4.35 ×  10–04

11075 STMN2 stathmin 2 8 Other Up 2.786 4.65 ×  10–04

55072 RNF31 Ring finger protein 31 14 Enzyme Up 2.249 4.74 ×  10–04

9913 SUPT7L SPT7 like, STAGA complex subunit gamma 2 Transcription regulator Up 2.605 6.26 ×  10–04

221823 PRPS1L1 Phosphoribosyl pyrophosphate synthetase 1 
like 1

7 Kinase Up 2.102 6.64 ×  10–04

Top differentially expressed lncRNA genes

100505933 ADD3-AS1 ADD3 antisense RNA 1 10 Other Up 2.075 1.42 ×  10–03

6315 ATXN8OS ATXN8 opposite strand lncRNA 13 Other Up 1.952 7.57 ×  10–03

100506070 RBFADN RBFA downstream neighbor 18 Other Up 1.683 9.10 ×  10–03

100131532 LOC100131532 Uncharacterized LOC100131532 6 Other Up 2.136 1.93 ×  10–02

25859 PART1 Prostate androgen‑regulated transcript 1 5 Other Down − 0.942 3.01 ×  10–02

100130449 LOC100130449 Uncharacterized LOC100130449 2 Other Down − 1.603 3.52 ×  10–02

Top differentially expressed pseudogenes

388714 FMO6P Flavin containing dimethylaniline monoxyge‑
nase 6, pseudogene

1 Other Up 1.778 5.11 ×  10–03

442240 ZNF259P1 Zinc finger protein 259 pseudogene 1 6 Other Up 2.054 5.65 ×  10–03

228 ALDOAP2 ALDOA pseudogene 2 10 Other Down − 1.573 1.05 ×  10–02

79986 ZNF702P Zinc finger protein 702, pseudogene 19 Other Up 1.653 1.32 ×  10–02

645,682 POU5F1P4 POU class 5 homeobox 1 pseudogene 4 1 Other Up 1.521 1.46 ×  10–02

5408 PNLIPRP2 Pancreatic lipase related protein 2 (gene/pseu‑
dogene)

10 Enzyme Down − 1.437 1.61 ×  10–02

440915 POTEKP POTE ankyrin domain family member K, pseu‑
dogene

2 Other Up 1.62 1.93 ×  10–02

730092 RRN3P1 RRN3 pseudogene 1 16 Other Up 1.548 1.96 ×  10–02

150244 ZDHHC8P1 ZDHHC8 pseudogene 1 22 Other Up 1.559 2.27 ×  10–02

202181 LOC202181 SUMO interacting motifs containing 1 pseu‑
dogene

5 Other Up 1.932 2.67 ×  10–02
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Fig. 3 A Graphical summary and B interaction network analysis of differentially expressed genes in smoker buccal mucosa. Different shapes 
represent the molecular class of the protein. Red and green indicate upregulation and downregulation, respectively, while blue and orange indicate 
inhibition and activation, respectively. A solid line indicates a direct interaction, a dashed line indicates an indirect interaction, and a dotted line 
indicates inferred correlation from machine‑based learning. An asterisk indicates that multiple identifiers in the dataset file map to a single gene or 
chemical in the Global Molecular Network

Table 3 Top 20 upstream regulators revealed by Ingenuity Pathway Analysis

Upstream regulator Molecule type Log2 ratio p value Z score

TP53 Transcription regulator 0.477 1.39 ×  10–09 1.028

Dexamethasone Chemical drug – 1.10 ×  10–06 0.438

APP Other 1.709 1.39 ×  10–06 0.01

SMAD3 Transcription regulator 0.687 3.20 ×  10–06 − 1.508

TNF Cytokine 0.098 5.90 ×  10–06 − 1.169

Decitabine Chemical drug – 6.61 ×  10–06 1.433

Tetradecanoylphorbol Chemical drug – 8.14 ×  10–06 − 1.916

L‑type calcium channel Complex – 1.01 ×  10–05 − 1.98

Camptothecin Chemical drug – 1.53 ×  10–05 − 0.64

KDM5B Transcription regulator 0.95 1.79 ×  10–05 1.04

OSM Cytokine − 0.844 2.74 ×  10–05 1.01

TGFB3 Growth factor 0.488 2.80 ×  10–05 − 0.877

Nitrofurantoin Chemical drug – 2.90 ×  10–05 − 1.437

Forskolin Chemical toxicant – 4.11 ×  10–05 − 2.25

TP63 Transcription regulator 1.346 4.15 ×  10–05 − 2.611

CSF3 Cytokine 0.301 6.00 ×  10–05 − 0.494

PPARA Ligand‑dependent nuclear receptor 0.147 6.01 ×  10–05 − 0.789

Haloperidol Chemical drug – 6.35 ×  10–05 − 1.591

LY294002 Chemical‑kinase inhibitor – 7.53 ×  10–05 0.822

RASSF1 Other 0.33 8.26 ×  10–05 0.333
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as the drug dexamethasone, among other molecules 
(Table  3). Figure  4 illustrates the data in Table  3 and 
emphasizes the predicted activation status of the top 
upstream regulators as revealed by IPA. As can be seen 
from Fig.  4, the most inhibited upstream regulator in 
smoker buccal mucosa is predicted to be the TP63 
protein.

Dexamethasone was predicted to be a top upstream 
regulator and affected a total of 78 genes via indirect 
interactions (Fig.  5A). Likewise, microRNA-8 (miR-8) 
was found by IPA to be among the top upstream regula-
tors to be activated, as miR-8 targeted 7 of the DE genes 
between smokers and never smokers (Fig. 5B). Of those 
genes, 5 (CCND2, ITGAV, QKI, RPS6KB1, and SMAD2) 
were under-expressed and 2 (BMP2 and CLDN3) were 
over-expressed.

Further analysis of the top upstream regulator proteins 
resulted in the construction of gene–gene (Fig.  6) and 
protein–protein (Fig.  7) interaction networks. Figure  6 

shows that the 36.04% of the top upstream regula-
tor proteins were predicted to have interactions with 
one another, 26.19% have shared protein domains, and 
22.85% were co-expressed. Similarly, Fig. 7 shows that the 
TP53 and TNF proteins had the highest number of inter-
actions with the other top upstream regulator proteins.

Enriched biological pathways
The most significant canonical pathway was identified as 
the nitric oxide and reactive oxygen production at mac-
rophages (Table 4).

Correlation of smoker buccal mucosa with other diseases
The DE genes in smoker buccal mucosa are significantly 
associated with cancer and organismal injury, among 
other diseases (Table 5).
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Fig. 4 Top upstream regulators predicted by Ingenuity Pathway Analysis in smoker buccal mucosa. A positive z score indicates activation, while a 
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Fig. 5 Upstream regulators dexamethasone and miR‑8. A Chemical drug dexamethasone is predicted to be activated in smoker buccal mucosa 
with P value = 1.10 ×  10–06 and Z score = 0.438. B miR‑8 is predicted to be activated in smoker buccal mucosa with P value = 8.90 ×  10–02 and Z 
score = 2.1. Different shapes represent the molecular class of the protein. Red and green indicate upregulation and downregulation, respectively, 
while blue and orange indicate inhibition and activation, respectively. A solid line indicates a direct interaction, a dashed line indicates an indirect 
interaction, and a dotted line indicates inferred correlation from machine‑based learning. An asterisk indicates that multiple identifiers in the 
dataset file map to a single gene or chemical in the Global Molecular Network
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Fig. 6 Construction of a gene–gene interaction network of the upstream regulators with the most significant differential expression. Black 
circles with white stripes indicate genes that were entered as query terms, while black circles indicate the associated genes. The size of the circle 
corresponds with the number of correlations with other genes in the network
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Pathway and functional enrichment analysis
Figure  8 illustrates the most over-represented biologi-
cal processes in smoker buccal mucosa. Interestingly, 
craniosynostosis and fibroid tumors were revealed to 
be the topmost significantly over-represented biological 
processes.

Figure 9 shows the results of signaling network analysis 
of the 459 significantly DE genes, with the SMAD2 gene 
having the most interactions. SMAD2 is directly down-
regulated by the CTDSPL and SKIL genes and indirectly 
upregulated by the BMP2 gene.

Discussion
The most significantly differentially expressed (DE) pro-
tein-coding genes in smoker buccal mucosa were the 
CHD5, QKI, BATF3, and IL6R genes, which have previ-
ously reported associations with smoking and related 
diseases.

The CHD5 gene, which is a tumor suppressor gene 
that is preferentially expressed in the nervous system 
and testis, was significantly upregulated in smoker buc-
cal mucosa [20, 21]. CHD5 is believed to serve as a 
master regulator in tumor-suppressive networks, and 
CHD5 expression levels are strongly associated with the 
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Textmining
Co-expression
Protein homology

Others

Fig. 7 Protein–protein interaction network of the top upstream regulators with the most significant DE

Table 4 Top five canonical pathways revealed by ingenuity 
pathway analysis

Pathway p value − log(p value) Z score

Nitric oxide and reactive oxygen 
production at macrophages

0.00124 2.9 − 1.26

Retinol biosynthesis pathways 0.00159 2.7 − 1.3

Thyroid tumor signaling pathways 0.00441 2.3 − 0.81

Insulin signaling pathways 0.00860 2.0 − 2.11

Macrophages/fibroblasts and 
endothelial cells in rheumatoid 
arthritis

0.00895 2.0 N/A

Table 5 Top five diseases or disorders revealed by Ingenuity 
Pathway Analysis

Disease Number of 
molecules

p value

Organismal injury/abnormali‑
ties

436 5.00 ×  10–04 to 6.75 ×  10–23

Cancer 432 5.00 ×  10–04 to 6.75 ×  10–23

Gastrointestinal disease 393 4.66 ×  10–04 to 1.01 ×  10–14

Endocrine system disorders 385 4.99 ×  10–04 to 1.25 ×  10–18

Reproductive system disease 311 4.99 ×  10–04 to 7.24 ×  10–13
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prognosis of several cancers, including hepatocellular 
carcinoma and non-small cell lung cancer [20, 22–24]. 
One study found that a rare CHD5 variant, rs12564469-
rs9434711, contributed to the risk of hepatocellular car-
cinoma, a risk effect which was statistically significant in 
alcohol drinkers but not smokers [25].

The QKI gene contributes to a number of human dis-
eases, including cancers, myelin disorders, and schiz-
ophrenia, and it is a critical regulator of alternative 
splicing in cardiac myofibrillogenesis and contractile 
function [26]. QKI has also been identified as a master 
regulator of alternative splicing in human lung cancer 
cell lines, but no significant statistical association was 
found between QKI expression and smoking status in 
lung tumors [27, 28]. Moreover, QKI was identified as a 
significantly altered gene in the ciliated epithelial cells of 
lungs affected by chronic obstructive pulmonary disease 
(COPD), a disease that is primarily caused by tobacco 
smoking [29].

The BATF3 gene belongs to the AP-1 transcription fac-
tor family, whose members respond to a range of path-
ological and physiological stimuli by mediating gene 
expression [30]. BATF3 controls the differentiation of 

dendritic cells, inhibits the differentiation of regulatory T 
cells, and critically regulates the development of memory 
T cells [31, 32]. BATF3 expression in the lungs was nec-
essary in order to induce protection against allergic air-
way inflammation through tolerization with Helicobacter 
pylori extract [33]. Moreover, the acute inhalation of 
electronic cigarette smoke by healthy never smokers led 
to the significant upregulation of BATF3, among other 
genes that play a role in promoting tumorigenesis [34].

The IL6R gene is a pleiotropic regulator of both 
acquired and innate immune responses, and it is believed 
to be expressed in the lungs [35]. There have been con-
flicting findings regarding the benefits of anti-IL-6R 
therapy for COVID-19-induced acute respiratory dis-
tress syndrome [36, 37]. In the context of smoking, 
exposure to cigarette smoke led to increased IL6R 
mRNA levels in primary bronchial epithelial cell lines 
[38]. Moreover, a certain IL6R haplotype (rs6684439-
rs7549250-rs4129267-rs10752641-rs407239) has been 
associated with a lower COPD risk in a Mexican Mestizo 
population, while the IL6R variant Asp358Ala did not 
show any association with COPD [39, 40].

Fig. 8 Over‑representation analysis of the most significantly differentially expressed genes (p < 0.05). The size of the circle corresponds with the 
number of genes that are mapped to a biological process, while a redder color indicates increased significance
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Pseudogene expression was also altered in smoker 
buccal mucosa, most notably in the upregulation of 
FMO6P, ZNF259P1, and ZNF702P and the downregula-
tion of ALDOAP2 and PNLIPRP2. FMO6P has significant 
sequence homology with the FMO3 gene, the latter of 
which functions to metabolize a small amount of nicotine 
[41]. A single nucleotide variation in the FMO6P pseudo-
gene, rs6608453, was associated with nicotine depend-
ence in African Americans [42]. Likewise, ALDOAP2 was 
over-expressed in both healthy and non-healthy smokers 
compared to non-smokers, while exposure to cigarette 
smoke resulted in the upregulation of the PNLIPRP2 pol-
ymorphic pseudogene in a murine model [43, 44]. In con-
trast, ZNF259P1 and ZNF702P did not have previously 
reported associations with smoking. ZNF259P1 was 
significantly correlated with the tumor size of primary 
lung adenocarcinomas, while ZNF702P was found to be 

upregulated after BCL2L10 knockdown in two ovarian 
cell lines [45, 46].

Analysis of upstream regulators revealed that the 
tumor protein 53 (TP53) gene was the most significantly 
DE regulator in smoker buccal mucosa. TP53 contains 
cellular proliferation by guarding against genomic muta-
tion, and TP53 mutations are among the most com-
mon genetic alterations in human cancers [47]. Tobacco 
smoking is known to influence TP53 mutation patterns 
and frequencies in lung cancer and urothelial cell car-
cinoma patients [48, 49]. In fact, a large proportion of 
TP53 mutations in the lung cancers of smokers were 
G → T transversions, a primary mutagenic signature that 
is caused by DNA damage from tobacco smoke [50].

The most significant canonical pathway identified by 
IPA was the “nitric oxide and reactive oxygen produc-
tion at macrophages”. Nitric oxide and reactive oxygen 

Fig. 9 Pathway signaling network generated from the most significantly differentially expressed genes. Different shapes represent molecular class, 
while red and blue indicate downregulation and upregulation, respectively
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species are essential for maintaining redox balance, but 
they also act in pathological processes [51]. Tobacco 
smoke contains large numbers of free radicals, includ-
ing nitric oxide and reactive oxygen species (ROS), that 
cause oxidative stress on the cellular and sub-cellular 
levels [52, 53]. In turn, smoking-induced oxidative 
stress activates inflammatory response pathways that 
produce endogenous ROS at the site of oxidative stress, 
potentially causing further oxidative damage to that 
site [53]. Smoking also reduces the production of nitric 
oxide while also elevating the production of ROS in 
endothelial cells [54, 55]. Smoking-induced ROS pro-
duction is especially concerning as it may contribute to 
the progression of endometrial adenocarcinoma [56].

Among the DE genes, those associated with cranio-
synostosis and fibroid tumors were over-represented in 
smoker buccal mucosa.

Craniosynostosis, which is caused by the premature 
fusion of cranial sutures, is the second-most common 
cranio-facial anomaly [57]. Smoking during pregnancy 
was associated with an increased risk of craniosynostosis, 
while exposure to secondhand smoke modestly increased 
the risk of this birth defect [58]. Maternal smoking 
impacts cranio-facial development by acting upon variant 
alleles of the transforming growth factor alpha (TGF-α) 
gene, and genetic variation of the TGF-α gene is associ-
ated with increased risk of cranio-facial defects [59, 60].

Fibroid tumors are non-cancerous growths that 
develop inside or on the uterus and are the most com-
mon type of pelvic tumor detected in women [61]. Pre-
vious studies that investigated the impact of smoking on 
fibroid tumors yielded conflicting results. Earlier studies 
suggested that smoking had a protective effect against 
fibroid tumors, but subsequent studies have shown either 
a negative effect or no relationship at all [61, 62]. It is 
worthwhile to note that smoking has been shown to have 
an anti-estrogenic effect in women, resulting in an earlier 
natural menopause as well as protective associations with 
the risk of estrogen-related cancers [63, 64].

Pathway network analysis revealed that the SMAD2 
gene had the highest number of interactions with other 
DE genes, and it was also a target of miR-8. SMAD3 was 
predicted by IPA to be an inhibited upstream regulator. 
The SMAD Family Member 2 (SMAD2) gene encodes for 
a protein that is vital for early development, and SMAD2 
mutations were associated with complex cranio-facial 
defects in a murine model [65]. SMAD2, SMAD3, and 
SMAD4 mediate the signal transduction of transforming 
growth factor-β (TGF-β) superfamily members, the latter 
of which induce a range of effects that involve cellular dif-
ferentiation, proliferation, migration, and apoptosis [66].

The present study is affected by a few limitations. The 
sample size was relatively small, and the patient samples 
differed in terms of sex and race, which could confound 
the interpretation of the genetic variation. Additionally, 
several differentially expressed genes in smoker buccal 
mucosa were uncharacterized or unmapped to pathways, 
meaning that their effects are not considered in the cur-
rent analysis.

Conclusion
The current findings signify the importance of inflam-
matory response and oxidative stress as a major compo-
nent of smoking-induced tissue injury. Most significantly, 
nitric oxide-related inflammation stands as one of the 
canonical pathways underlying genetic and molecular 
pathways changes coupled with exposure to cigarette 
smoke. Future lines of research should focus on validat-
ing the results of the current study in a larger population 
to ascertain potential therapeutic targets in the context of 
smoking-induced damage.
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